前景无限!2017年量子计算机将可走出实验室
2017-01-10 09:53:02   来源:科学网
内容摘要
量子计算机在我们看来是距生活很遥远的一项技术,但科学家将在2017年把量子计算机搬出实验室,争取让它在实际领域完成一些非常有用的目标。

很多人认为量子计算机还处于实验阶段,不能用于实际领域。而2017年,量子计算机将走出实验室,实现技术突破。

计算巨头谷歌和微软最近聘请了大量“重量级”人物,并且为2017年设置了一些具有挑战性的目标。它们的野心反映了量子计算正在从纯科学转变到工程建造。

“人们是真的在建设一些东西。”IonQ公司联合创始人、美国马里兰大学物理学家Christopher Monroe说,“我从来没见到过这样的现象,量子计算已经不仅仅是科学研究了。”

《自然》杂志报道称,谷歌在2014年就开始研究基于超导性的量子计算机。它希望在2017年或者稍晚一些,开发出的量子计算机能超越最强大的“传统”计算机——这一里程碑被命名为量子霸业。而其竞争对手微软,则把赌注压在了一个吸引人但还未经验证的概念——拓扑量子计算上,并希望首先实现这一技术。

量子计算初创企业也是一片火热。Monroe计划在2017年年初启动一轮招聘。耶鲁大学物理学家、初创企业Quantum Circuits的联合创始人Robert Schoelkopf以及IBM应用物理学家、Rigetti创始人Chad Rigetti则表示,他们很快会实现关键技术的突破。

学术实验室也处在类似的拐点。“我们已经对所需组件和所有功能进行了演示。”Schoelkopf说。但Schoelkopf等人认为,虽然要让所有组件共同工作,还需要进行一系列物理实验,但现在最主要的挑战是在工程上。

目前,最大量子位(20)的量子计算机,已经开始在学术实验室中进行测试。例如,在奥地利因斯布鲁克大学中,由Rainer Blatt领导的研究小组就在进行此类。

前景无限!2017年量子计算机将可走出实验室 科技世界网


传统的量子计算机把信息转化成量子位进行编码,有两种状态:0或1。但组成量子计算机的量子位也可能会处于叠加状态,也就是同时处于1或者同时处于0。而这种叠加,加上量子位分享量子状态的能力(纠缠),能够让计算机立刻执行任何形式的计算。而且,从理论上说,计算的数字是每一个增加的量子位的两倍,这会带来计算速度的指数级增长。

这种速度能让量子计算机执行任何具体的任务,例如在大型的数据库中进行搜索,这些在速度较慢的传统计算机中可能无法实现。量子计算机也可以变成一个研究工具:演示量子模拟,让化学家能使用此前没有预料到的细节理解反映,或者能让物理学设计出能够在室温下实现超导的材料。

而关于如何建造量子位,目前有许多建议。不过,两个主要的方法逐渐脱颖而出,这要归功于其储存信息的能力和不断增长的持续时间。虽然它们的量子状态还是很容易受到外部条件的干扰,并且在量子逻辑门运算上还有困难。

其中一个方法是Schoelkopf参与提倡的,得到谷歌、IBM、Rigetti和Quantum Circuits的采用。该方法涉及在超导循环中,把量子状态当成震荡波流进行编码。另一个方法是IonQ和一些主要实验室青睐的,即把量子位编码为单一的离子,并将其置于真空聚集槽的电磁场中。

在2014年带领团队一起加入谷歌的美国加利福尼亚大学圣塔芭芭拉分校的John Martinis说,超导技术的成熟让他的团队可以对量子霸业设置一个大胆的目标。

Martinis团队计划使用一个“混乱的”量子算法实现这一目标。这一算法的产出看起来像一个随机的输出。但如果该算法在一个由相对较少的量子位组成的量子计算机上运行,一个传统的机器也能预测最后的输出,但一旦量子机器的量子位接近50,即使是大型的传统超级计算机也难以企及。

这一计算的结果可能没什么用,但是他们的尝试说明了,现在有一些任务是量子计算机无法攻克的。Martinis说:“我们想,这会是一个对未来有重要意义的实验。”

但Schoelkopf并没有把量子霸业看成是一个“非常有趣或者有用的目标”,部分原因是它避开了纠错的挑战:系统在外部环境对量子位轻微的扰动后,恢复其信息流动方向的能力,这随着量子位数量的增加,会变得越来越难。反之,Quantum Circuits从一开始就打造能纠错的机器。这要求建立更多的量子位,机器也能够运行更加复杂的量子算法。

Monroe则希望能尽快实现量子霸业,但这并不是IonQ的主要目标。这家初创企业的目标是建造拥有32或者64个量子位的计算机,相对超导电流技术,其离子阱技术也会让其设计变得更灵活、更可扩展。

同时,微软的拓扑量子计算依赖于物质间的刺激,即通过量子位之间的纠缠进行信息编码。储存在这些量子位中的信息对外部的干扰会有更强的抵抗力,同时也能让纠错变得更容易。

但没有人能够创造出这种刺激所需的物质状态,更不用说拓扑量子比特。但微软已经雇用到该领域四位领军人物,包括荷兰代尔夫特大学的Leo Kouwenhoven,他创造出似乎是正确的刺激类型。

“我跟我的学生说,2017年是转折之年。”Kouwenhoven说。


【微软宣布研制全新量子计算机原型系统

近期,微软在官方网站刊文表示将着手量子计算工程样机研发,并宣称这可能是一台能击败谷歌和IBM的量子计算机样机。

与谷歌和IBM使用超导导线环作为量子比特不同,微软的思路是基于一种被称为“任意子”(anyons)的粒子,这种粒子只能存在于二维空间,具有奇异的物理特性。负责量子计算机项目的微软资深技术经理托德·霍尔姆达尔(Todd Holmdahl)透露,微软目前已经基本完成了基本量子比特模块的设计,正在进行样机设计。霍尔姆达尔表示,一旦第一个量子比特制成,微软将开始构建大规模量子比特阵列的研究。

微软采用了“拓扑量子计算”方案,基于一种被称为“拓扑量子比特”的量子信息单位。该方案的基础是2016年度诺贝尔物理学奖获奖内容。微软团队相信拓扑量子比特能够更好地应对温度、电噪声等因素的干扰,从而长时间保持量子状态,更具实用性、稳定性和工作效率。

前景无限!2017年量子计算机将可走出实验室 科技世界网


霍尔姆达尔的研究团队阵容强大,包括荷兰代尔夫特理工大学物理学家里奥·考文霍温(Leo Kouwenhoven)、哥本哈根大学物理学家查尔斯·M·马库斯(Charles M. Marcus)、悉尼大学物理学家大卫·雷利(David Reilly)等。

上述物理学家表示,在过去两年里,科学研究取得了进步,科学家越来越有信心,他们认为微软可以创造出更稳定的量子,正因如此,微软才会作出开发拓扑量子计算机的决定。

“将半导体与超导体结合在一起,这就是配方的秘诀。”马库斯表示,最近研究人员取得突破,他们已经可以控制形成量子的材料。研究人员使用多种方法彼此竞争,核心问题在于将量子计算机温度降至绝对零摄氏度。

微软很重视工程样机研发,但并不仅仅想要一台只能在实验室中工作的量子计算机,而是希望提供量子计算软硬件接口,从而让对量子计算并不精通的其他领域专家也可以用该机器来解决现实世界中的问题,进而引领新一轮信息技术革命。

研究人员深知,要开发出可以真正使用的量子计算机还有很大的挑战,在基本物理层还有问题需要解决,研究人员还要开发新软件挖掘量子设备的潜能。

目前,科技界对量子计算机的出现越来越乐观。若量子计算机果真投入使用,许多行业都会受到影响,比如药物设计、数据搜索、人工智能等,人类对现代物理也会有更深入的理解。

在启动量子计算机样机研制的同时,微软还启动了相应的量子计算软件研发项目,目的在于开发能够求解复杂问题的软件。软、硬件之间的研发工作还可以互相推动,共同促进。


【群雄逐鹿量子计算机 科学家接近打败传统计算

一个周日的下午,量子计算创业公司ionQ的两位联合创始人正和他们的首位受雇人——新CEO,开战略会议。坐在美国马里兰大学的物理学楼里舒适的皮椅上,两位创始人正体验着一丝文化碰撞。

这两位从事研究的科学家:马里兰大学物理学家Chris Monroe和杜克大学电子工程师Jungsan Kim很放松,甚至大谈公司规划。他们列举了为何选择束缚离子,他们的专长将有助于打造一台伟大的量子计算机——完美的再现性、耐久性以及利用激光实现良好的可控性。

而新CEO David Moehring是Monroe和Kim刚从美国IARPA雇来的,他更警觉。他警告Monroe和Kim不要泄露创业公司应保密的信息——包括从风投那里获得的投资额。Kim对Moehring点着头并轻笑。“在某个时点,这个家伙会要求我们的谈话经过他的许可。”

黄金时代

不过,这几个看似不可能的合伙人都有一个共同的信念:量子计算已经准备迎来黄金时期。该技术旨在利用量子力学大幅加速计算。他们并非孤军奋战。科技巨头英特尔、微软、IBM和谷歌正投入数千万美元到量子计算。然而这些竞争者正将赌注下给不同的技术黑马:无人知晓驱动一台实用的量子计算机需要什么类型的量子比特。

谷歌常被视为这一领域的领头羊,该公司已经宣布了其选择:微型超导电路。其研究团队打造出一台9量子比特的机器,并希望一年内扩展至49量子比特——这是一个重要门槛。在50量子比特阶段,许多人认为一台量子计算机就可以成为“量子霸权”。这是加州理工物理学家John Preskill创造的词汇,以表示一台可以完成超越传统计算机的量子计算机,比如模拟化学和材料科学分子结构或解决机器学习中的某些问题。

ionQ团队并没有被谷歌的成功所折服。“我并不担心谷歌会在下个月宣布游戏结束。”Kim说,“或者他们可以这么宣布,但游戏并未结束。”

但ionQ有很多劣势——没有专门的办公室,甚至还没有网站。这家创业公司仍然在坚持束缚离子,这也是世界上最早的量子逻辑门背后的技术,由Monroe本人在1995年亲自帮助创造出来的。使用精准调制的激光脉冲,Monroe可以将离子激发到可以维持数秒的量子态——这比谷歌的量子比特维持时间长多了。Kim已经开发出了一个可以将离子群连接到一起的模块化方案。

到目前为止,其中最好的成绩也不过是实现了5个量子比特的可编程机器。Monroe承认:“束缚离子现在有点像怪物,但我认为未来几年人们会蜂拥而至。”

有一件事是确定无疑的:打造一台量子计算机已经不再是一些科学家的遥远梦想了,而是成了一些最大型公司的直接目标。尽管对产业界玩家而言,超导量子比特可能已经获得了领先的发展势头,但相关专家都认为现在要说哪种技术已获胜还为时尚早。“这些技术在齐头并进地开发着,这是件好事。”Preskill说,“还可能会有惊喜,并改变现在的局面。”

前景无限!2017年量子计算机将可走出实验室 科技世界网


快并脆弱

量子比特能秒杀传统计算机比特得益于两个独特的量子效应:量子叠加和量子纠缠。量子叠加能让一个量子比特的值不单止于0或1,而是在同一时间同时具备这两种状态,这可以实现同步计算。量子纠缠能让一个量子比特与空间上独立的其他量子比特共享自身状态,创造出一种超级叠加,每个量子比特的处理能力因此翻倍。理论上,只要300全纠缠的量子比特就能支持比宇宙中原子数量更多的平行计算。

这种大规模并行可能在很多任务上并没有价值——没有人认为量子计算机会彻底改变文字处理或电子邮件。但其可以极大地加速被设计用来同时探索大量不同路径的算法,例如,大数据搜索和发现新型的化学催化剂。量子计算机也可以在物理学领域被用来模拟黑洞或其他现象。

但还有很多工作要做。量子叠加态和纠缠态非常脆弱。来自环境的轻微扰动就能将其破环——甚至对其进行观测就会破坏其状态。量子计算机需要被保护起来,以免受耶鲁大学物理学家Robert Schoelkopf所说的“经典混沌之海”的干扰。

虽然相关理论在20世纪80年代初就开始萌芽,但实验量子计算直到1995年才得以发展。1995年,新泽西州贝尔实验室一位名叫Peter Shor的数学家,证明了运用量子计算机能有效地进行大数的因式分解,这种能力使得现代密码学在量子计算机面前变得不堪一击。Shor和其他一些学者也证明,从理论上说通过邻近的量子比特来纠正错误,一直保持脆弱量子比特的稳定性是可能实现的。

一时间,许多物理学家及其资助人也都开始研发量子计算机,并且表明这个机器不会变成一大堆级联错误。诺奖得主、科罗拉多州博尔德国家标准技术研究所(NIST)物理学家David Wineland,率先提出了激光冷却离子并控制其内部量子态的方法。在Shor的研究发布之后不到一年,Wineland和当时供职于NIST的Monroe就通过用激光控制铍离子中的电子态的方法,建立了第一个量子机制逻辑门。Monroe说:“正是因为Wineland在离子方面的研究,我们才能在早期的量子计算实验中把握领先趋势。”

多管齐下

随着世界各地政府将大把经费投向量子物理研究团体,其他一些类型的量子比特开始出现了。21世纪初,束缚离子的概念受到了另一个新概念的挑战:由超导体制成的回路。这里所使用的超导体是一种带有振荡电路的金属材料,其在冷却到接近绝对零时没有电阻。量子比特的0和1与不同的电流强度相对应。回路通过肉眼便可以观察,不需要用到激光,用简单的微波电子技术就可以控制,制作过程只需要使用常规的计算机芯片制造技术。此外,回路的运行也非常快。

但超导体有一个致命的弱点:环境噪音。即使是用来控制它们的电子设备,都能在不到一微秒内打乱其量子叠加态。但工程技术的发展已经将回路的稳定性提高了至少100万倍,所以现在它们保持叠加态的时间可以达到几十微秒,虽然维持时间仍比离子短得多。

2007年,加拿大本那比D-Wave Systems公司发布了一则令人震惊的消息,它宣布研制成功了16个量子比特的超导量子计算机。该计算机所依赖的是一种叫做量子退火的技术,在这种技术当中,量子比特可以和邻近的量子比特纠缠,交互产生一个单独的整体量子态,而不是一系列并行计算。

尽管批评声接踵而至:D-Wave甚至没有尝试解决那些对量子计算来说至关重要的问题,例如纠错。但各大公司仍对这种设备趋之若鹜,谷歌和洛克希德马丁公司都成了D-Wave的客户。D-Wave让一些公司开始展开思路。“它让我们睁开了双眼,D-Wave的出现预示着这个市场正在形成,需求已经出现。”Monroe说。

而英特尔在2015年宣布,将对源自荷兰代尔夫特科技大学的QuTech公司投入5000万美元,开发硅量子点。它也经常被称为“人工原子”,每个点量子比特是一块小材料,其中结构就像原子一样,电子的量子态可以用来表示0和1。不同于离子或原子,量子点不需要用激光。“我认为英特尔的心脏是由硅组成的。”QuTech科学总监Leo Kouwenhoven说,“这就是为什么他们拥有如此地位的原因。”

微软的行动看起来更加有远见:基于非阿贝尔任意子的拓扑量子比特。而谷歌已经招募到了加州大学圣塔芭芭拉分校超导量子比特专家John Martinis。7月,Martinis的团队用3个超导量子比特成功地模仿了一个氢分子的基态能,证明量子计算机和常规计算机一样具备模拟简单量子系统的能力。

与此同时,Monroe正在和束缚离子研究中遇到的挑战“缠斗”。束缚离子的量子比特可以维持数秒的稳定,这一特性得益于真空腔和电极的作用,它们可以在外部噪声存在的情况下维持量子比特的稳定。

即使有大量资金投入,量子计算成为一个秘密商业领域还有很长的路要走。更重要的是,没有人足够了解量子计算,所以也就没人能说用哪一种量子比特就能实现量子计算机。在扩展实用的量子计算机之前,每一种方面都还需要经过精心的调制细化。超导基量子比特和硅基量子比特需要在更大的一致性下制造,而冷却设备需要高效化。同时束缚离子需要更快的逻辑门和更紧凑的激光与光学器件。拓扑量子位也还需要被创造。

未来的量子计算机很可能是一个混合物,它利用超快的超导量子比特运行算法,然后用更稳定的离子内存输出,同时使用光子在该机器的不同部分之间或量子网络节点之间穿梭传递信息。微软研究人员Krysta Svore说:“可以想象我们会身处这样一个境地:有几类量子比特,它们各自扮演不同角色。”


【量子计算机迈出实用化脚步

据外媒报道,谷歌正在加紧其量子计算机研发步伐,报道中不乏“量子计算领域正在快速重组,谷歌的工程师已经悄悄拿出了计划要成为该领域的霸主”“最快2018年年底之前就能实现目标”这样的措辞。一时间,量子计算机这一跨时代的“黑科技装备”似乎已款步而来。

然而,量子计算机的研发门槛之高、难度之大,虽举国体制亦不敢妄言“几年内便可成为现实”。就连谷歌高薪聘请的来自加州大学圣巴拉拉分校的知名物理学家约翰·马提尼斯(John Martinis)本人也曾表示:“尝试制造一台实际意义上的量子计算机,简直是物理学上的一个噩梦”。

谷歌“几年内实现量子计算机计划目标”多为第三方的乐观预估和解读,而“谷歌欲成为量子计算领域霸主”,则多为媒体未经核实谷歌工程师发表的关于量子计算计划论文、转而对外媒报道的曲解和误读。

被误读的“量子霸权”

翻看New Scientist的报道可以看出,将谷歌量子计算机计划等同于“量子霸权”属于误读。

首先,谷歌的确有一整套量子机器学习的计划,这从其早早设立“量子人工智能实验室”这一部门即可看出。但是,谷歌量子计算机并没有“量子霸权”这样一个名字。

New Scientist对谷歌量子计算机计划报道的标题是“Google’s plan for quantum computer supremacy”,supremacy在词典上有“霸权”“至高无上”“优越”之意,但将quantum computer supremacy编译为“量子霸权”显然有赚取眼球之嫌。况且在该标题中,supremacy首字母为小写,并不能将其认为是谷歌为量子计算机计划拟定的项目名称。

一位接近谷歌的匿名人士表示,在谷歌的语境里,quantum supremacy指的仅仅是,一台量子计算机能比经典计算机更好地解决一个计算问题,就说明这台量子机具有“quantum supremacy”。在这个语境下,该词组最好翻译成“量子机优越性”。

也就是说,谷歌近期的目标其实很实际,只要证明一台基于量子理论的机器能解决一个经典计算机不能更好地解决的事,就能说明量子计算机相对经典计算机的确具有“优越性”。

通过查阅材料得知,谷歌在为其量子机选取的数学问题上认为,只要其量子机能模拟50个量子比特构成的网络,就算打败“最多只能模拟42个量子比特构成的网络”的超级计算机Edison。谷歌认为,这个实验会是一次证据确凿的“quantum supremacy”。

此外,谷歌也并没有宣称2018年底或者具体何年何月就能实现这个目标。上述报道中也是引用一些业内人士的观点,认为谷歌“最早2018年底就能实现这个目标”,“5年的时间里都实现不了这个目标会显得不可思议”。而谷歌自己的计划是大约10年的时间,至少要在谷歌自己的服务中用上量子机器学习。

前景无限!2017年量子计算机将可走出实验室 科技世界网


量子计算机已走出“象牙塔”

中国科学院院士、中科院量子信息重点实验室主任郭光灿表示,尽管谷歌未明确说明其计划完成的50个量子比特芯片的目标中量子比特数是“物理比特”还是“逻辑比特”,仅就量子计算机这一前沿性科学领域由作为企业的谷歌引领这一点而言,足以说明量子计算机已非昔日科研机构“象牙塔”里的探索性科学课题,而是已经历史性地“迈出了实用化的步伐”。

那么,谷歌的量子计算机的这一步到底迈出了多远呢?

郭光灿解释说,量子比特存在物理比特和逻辑比特两个概念。物理比特并不稳定,即便现在可以做到50个物理比特的量子芯片,但因其不稳定,量子相干持续时间太短,无法以量子态完成计算,因此不能称之为量子计算机;而要经过纠错码或编码对量子态进行“维持”,就需要多位物理比特才能生成一个逻辑比特,由多个这样的逻辑比特组成的量子芯片才能有很好的量子相干性和容错特性,做成的量子计算机才称得上真正的量子计算机。

因此,谷歌计划完成的50个量子比特的目标,如果是逻辑比特,就量子位的数量而言,确实是足以称之为真正意义上的量子计算机;但如果是物理比特,50个物理比特距离超越传统计算机的量子计算机依旧有相当大的差距。

而这正是制造量子计算机的难点。谷歌在其发表的论文中的确也提到了“without error correction”这点,如果不需要纠错的机器能够解决一些实际问题,无疑会让实现quantum supremacy这个目标离我们更近。

郭光灿表示,一般认为,量子计算要产生相对于传统计算足够多的优势,有效的逻辑比特的数目必须要大于30个才行,而要完全通用量子计算,要几十、上百个可实现任意量子逻辑操作的量子逻辑比特。

计算技术的下一个里程碑

如果研制出真正的通用量子计算机,那么它的诞生的确对经典计算机有压倒性优势。特别是在超并行计算能力方面,量子计算机大幅优于经典计算机。例如,求一个300位数的质因数,目前最好的经典计算机可能需要上千年的时间来完成,而量子计算机理论上可以在几小时甚至几分钟内完成。特别是在核爆模拟、密码破译、材料和微纳制造等领域,量子计算具有突出优势,是新概念高性能计算领域公认的发展趋势。

“如果把经典超级计算机比作常规导弹,量子计算机就好比核弹头。”郭光灿用这个形象的比喻说明了二者的区别,“当然,就像我们平时不可能随便动用核弹,常规计算机也不会因量子计算机的出现而被淘汰,但量子计算机就是这样,它的出现将在计算能力上碾压经典计算机。”

不过,不少物理学家都认为,通用量子计算机实用化或许是太过困难的事,但能实用化特定目的的(尤其机器学习相关)量子计算机就已经有巨大的学术价值和工业价值了。

对量子计算充满兴趣的麻省理工学院的计算机科学家斯科特·阿隆森(Scott Aaronson)就持此看法,他就谷歌量子计算机计划发表了自己的公开评论。

“在量子计算实验领域,与经典计算机对决的一些人所谓的谷歌‘量子霸权’计划最是让我兴奋不已。这是一个清晰的目标:用量子计算硬件去达成对某些定义好的数学任务的加速——相对于经典算法而言。尽管目前的‘量子计算机’是特制的、非可扩展性硬件的专门机器,但这仍将是科学上一个重要的里程碑。它反驳了那些认为量子计算不能够实用的人,并且将给未来硬件升级能够解决更多实用问题以舞台。”

斯科特·阿隆森还很乐观地预计,“‘quantum supremacy’计划将在5~10年内实现,并且我认为硬件工程师们应该将焦点聚集在此:相对于实际应用中的‘纠缠’问题,为何不先去实现这一里程碑,然后再去担心如何实际应用?”

(如需转载,请注明来源自 科技世界网